The holographic principle is a tenet of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region—such as a light-like boundary like a gravitational horizon. First proposed by Gerard ‘t Hooft, it was given a precise string-theory interpretation by Leonard Susskind, who combined his ideas with previous ones of ‘t Hooft and Charles Thorn.

As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

The holographic principle was inspired by black hole thermodynamics, which conjectures that the maximal entropy in any region scales with the radius squared, and not cubed as might be expected. In the case of a black hole, the insight was that the informational content of all the objects that have fallen into the hole might be entirely contained in surface fluctuations of the event horizon.

The holographic principle resolves the black hole information paradox within the framework of string theory. However, there exist classical solutions to the Einstein equations that allow values of the entropy larger than those allowed by an area law, hence in principle larger than those of a black hole. These are the so-called “Wheeler’s bags of gold”.

The existence of such solutions conflicts with the holographic interpretation, and their effects in a quantum theory of gravity including the holographic principle are not fully understood yet.

The anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

The duality represents a major advance in our understanding of string theory and quantum gravity. This is because it provides a non-perturbative formulation of string theory with certain boundary conditions and because it is the most successful realization of the holographic principle.

The Fermilab physicist Craig Hogan claims that the holographic principle would imply quantum fluctuations in spatial position that would lead to apparent background noise or “holographic noise” measurable at gravitational wave detectors, in particular GEO 600. However these claims have not been widely accepted, or cited, among quantum gravity researchers and appear to be in direct conflict with string theory calculations.

Analyses in 2011 of measurements of gamma ray burst GRB 041219A in 2004 by the INTEGRAL space observatory launched in 2002 by the European Space Agency shows that Craig Hogan’s noise is absent down to a scale of 10^{−48} meters, as opposed to the scale of 10−35 meters predicted by Hogan, and the scale of 10^{−16} meters found in measurements of the GEO 600 instrument. Research continues at Fermilab under Hogan as of 2013.

Jacob Bekenstein also claimed to have found a way to test the holographic principle with a tabletop photon experiment.